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ABSTRACT: Mitochondrial DNA (mtDNA) analysis has proved useful for forensic identification especially in cases where nuclear DNA is
not available, such as with hair evidence. Heteroplasmy, the presence of more than one type of mtDNA in one individual, is a common situation
often reported in the first and second mtDNA hypervariable regions (HV1 ⁄ HV2), particularly in hair samples. However, there is no data about
heteroplasmy frequency in the third mtDNA hypervariable region (HV3). To investigate possible heteroplasmy hotspots, HV3 from hair and blood
samples of 100 individuals were sequenced and compared. No point heteroplasmy was observed, but length heteroplasmy was, both in C-stretch
and CA repeat. To observe which CA ‘‘alleles’’ were present in each tissue, PCR products were cloned and re-sequenced. However, no variation
among CA alleles was observed. Regarding forensic practice, we conclude that point heteroplasmy in HV3 is not as frequent as in the
HV1 ⁄ HV2.
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Heteroplasmy, the presence of more than one type of mitochon-
drial DNA (mtDNA) within an individual, is a situation found
more commonly in hair than in blood samples (1–4). The clonal
nature of hair follicles and the high-energy requirements of kerati-
nizing hair shaft cells are two features of hair histogenesis that
could contribute to the high observation of the segregation of het-
eroplasmic variants in mtDNA from hair shafts (5). In contrast,
peripheral-blood samples consist of lymphocytes produced by a
very large number of hemopoietic stem cells in the bone marrow,
and if proportions differ in individual stem cells, the heteroplasmy
measured is an averaged value of the proportions of all stem cells.
The high mutation rate of the mtDNA, when compared to nuclear
DNA, appears to occur because it is more exposed to mutagenic
events, owing to its lack of protective histones, proximity to the

respiratory chain, and its relative deficiency in DNA repair mecha-
nisms (6).

Heteroplasmy can be differentiated into two types: point and
length heteroplasmy. A sequence point, or site heteroplasmy, is
defined as sequences containing different bases at the same posi-
tion. The sequence electropherogram usually shows two different
bases superimposed (7). A length heteroplasmy is represented by
multiple populations of mtDNA containing repetitive stretches (typ-
ically C-stretches or CA repeats) of various lengths.

The presence of heteroplasmy in a forensic case can be relevant
because two samples from the same individual may differ in levels
of heteroplasmy or sometimes in a homoplasmic substitution (8).
Therefore, it is important to determine the frequency of hetero-
plasmy and hotspots, to avoid incorrect interpretations.

While a number of studies have been published on hetero-
plasmy in the first and second hypervariable regions (HV1 and
HV2), little is known about the third hypervariable region (HV3).
Its importance to forensic science was described by Lutz et al.
(9), and it is now incorporated into forensic analysis, mainly
because of an informative dinucleotide repeat (CA)n (10–15).
Analysis of the entire mitochondrial DNA control region, includ-
ing HV3, is also being proposed, for the best determination of the
haplogroup affiliation of populations. Phylogenetic analysis is
being used for quality assurance of sequences (16). At this time,
there are no data about possible hotspots of heteroplasmic posi-
tions and their frequencies in the HV3 region, comparing hair and
blood samples.

The aim of our work was to find differences in the HV3 (nt
438-574) sequences between hair and blood from the same
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individuals to determine possible hotspots of heteroplasmic posi-
tions and the frequencies in those tissues.

Materials and Methods

DNA Samples and Extraction

One hundred unrelated Brazilian individuals were analyzed (all
the participants gave their written informed consent prior to their
inclusion in this study). Samples from head hair and blood (spotted
onto filter paper and air-dried) were collected from the same indi-
viduals (3–6 years previously), and stored at 8�C (in refrigerator)
until analyzed.

Hair shafts were cut off 0.5 cm above the skin surface, and
4 cm of the hair was cut into pieces of 0.5 cm each (more than
one hair was used when the length of hair was smaller than 4 cm).
Hair samples were decontaminated as described by Jehaes et al.
(17) prior to DNA extraction. DNA was extracted using Tissue and
Hair extraction kit (Promega, Madison, WI), with the following
modifications: incubation for 2 h 30 min, followed by phenyl ⁄chlo-
roform ⁄ isoamyl alcohol (PCIA) extraction (USB-GE GE, Chalfont
St. Giles, UK) and purification with columns of illustra GFXTM

PCR DNA and gel band purification kit (GE). DNA was eluted in
50 lL double-distilled H2O (ddH2O).

DNA was extracted from blood with the DNA IQTM System kit
(Promega), following the manufacturer’s instructions to obtain a
final concentration of 2 ng DNA ⁄lL.

PCR Amplification

Amplification was carried out on 10 lL of hair extraction prod-
uct or 4 ng of blood DNA template in a 50-lL reaction containing
each of the following primers at 0.2 mM: HV3-F314 (5¢-CCG
CTT CTG GCC ACA GCA CT-3¢) and HV3-R639 (5¢-GGG TGA
TGT GAG CCC GTC TA-3¢) (IDT, Coralville, IA), 5 lL of Gold-
STAR� Buffer (Promega), and 0.4 lL of AmpliTaqGold� DNA
polymerase (Applied Biosystems, Foster City, CA), made up to the
volume with ddH2O. Thermal cycling was performed in a Gene-
Amp� PCR System 9700 (Perkin-Elmer, Wellesley, MA) starting
at 95�C, for 11 min, then 1 min at 96�C, followed by 40 cycles at
94�C for 30 sec, 30 sec at 56�C, and 90 sec at 72�C, ending with
11 min at 60�C. Amplicon yield was evaluated by running 5 lL of
all the PCR product reaction and comparing it with 2 lL of Low
DNA MassTM Ladder (Invitrogen, Carlsbad, CA) on 1% agarose
gel, stained with ethidium bromide, to estimate the PCR product
concentration. Negative controls were included in the extraction
and PCR reactions, to detect any possible contamination. PCR
products were cleaned and concentrated (to at least 20 ng ⁄lL) with
illustra GFXTM PCR DNA and gel band purification kit (GE).

Sequencing

Cycle sequencing of both strands was carried out using BigDye�

Terminator Cycle Sequencing Ready Reaction Kit v1.0 (Applied
Biosystems), using the same primers as in the PCR reaction. Reac-
tion products were ethanol precipitated and electrophoresed in an
ABI PRISM� 377 Genetic Analyzer (Applied Biosystems).

Data Analysis

Data analysis was carried out with BioEdit software (18). Only
high quality sequences with little or no background signal were
used. Sequences were aligned with the Revised Cambridge

Reference Sequence. Point heteroplasmy was only accepted if a
secondary peak of more than about 10% of the primary peak was
present and confirmed in the reverse sequencing reaction. The pro-
portion of the secondary peak was estimated by measuring the
heights of the primary and secondary peaks of mixed basecalls, as
depicted in the electropherograms, with at least two independent
PCR reactions, to rule out sequencing artifacts or mixtures.

Cloning

PCR products containing CA heteroplasmy (electropherograms
‘‘out of phase’’) were cloned into the pGEM�-T Vector (Promega),
to isolate each allele. Plasmid DNA was isolated by using the pro-
tocol described by Sambrook et al. (19).

Results and Discussion

Point Heteroplasmy

No difference among hair and blood from the same individuals
was observed by direct PCR product sequencing and no point het-
eroplasmy was observed. Irwin et al. (20) and Zimmermann et al.
(21) reported point heteroplasmy at positions 448R and 498Y,
respectively, in blood samples. By contrast, no data has been pub-
lished to date regarding heteroplasmy in the HV3 region in hair
samples. Heteroplasmy had been shown to be frequent in hair sam-
ples in the HV1 and HV2 regions (3,22) and we expected that it
would also occur, to some extent, in HV3. In general, the sites at
which heteroplasmy is most commonly observed are correlated
with reported control region mutational hotspots. According to a
population study of 200 unrelated individuals from Germany, HV1
(np 16,024–16,365) showed 88 variable positions in a total length
of 342 bp (26%) and HV2 (np 73–340) displayed 65 mutable sites
in 268 bp (24%). HV3 (np 438–574) exhibited a slightly lower var-
iability, with 25 polymorphic sites within 137 bp (18%), but con-
trasted clearly with the intervening regions, which, respectively,
showed variability rates of only 7% (np 16,366–16,569, 1–72) and
3% (np 341–437) (9). In a Japanese study, in HV1, HV2, and
HV3, 80, 37, and 14 polymorphic sites were identified, respec-
tively, representing 23, 14, and 10% of the total size of each
region, excluding all C-stretches (23). Our population showed 22
polymorphic positions in HV3 (data not shown), excluding all C-
stretches, representing 16% of the total size of the region. Appar-
ently, because HV3 is a less polymorphic region than HV1 ⁄ HV2,
it appears to be less prone to mutation (9,24). At some sites, how-
ever, the observation of heteroplasmy is not consistent with estab-
lished mutation rate data, suggesting the action of other
mechanisms, both selective and neutral, as occur at position
16,093. However, we did not find any vestige of point hetero-
plasmy in our samples.

Length Heteroplasmy

Concerning length heteroplasmy, however, one individual
showed heteroplasmy in the CA repeat (in both blood and hair
samples) with ‘‘out of phase’’ electropherogram (Fig. 1). This
result, regarding blood samples, is consistent with earlier studies.
Szibor et al. (13) found 1.38% of CA heteroplasmy in a German
population and Chung et al. (25) found 0.6% in a Korean popula-
tion. No information about its frequency in hair samples has been
published to date. As for the mechanism of heteroplasmy formation
in the CA dinucleotide repeats, their propensity for insertion ⁄ dele-
tion mutation of multiples of the repeating unit during replication
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could explain the phenomenon, as could the low fidelity of mito-
chondrial DNA polymerase. A high slippage rate of dinucleotide
repeats can be observed in STRs, and the resultant stutter produc-
tion is correlated with the length of repeat stretches consisting of
uniform repeats (26). Length heteroplasmy was also observed at
position 573 (poly-C stretch) in three individuals.

To observe which CA ‘‘alleles’’ were present in each tissue con-
taining CA heteroplasmy, PCR products were cloned and re-
sequenced. The presence of mixed alleles would suggest the possi-
bility of an intra-individual difference in CA repeats between hair
and blood samples. However, no variation among CA alleles was
observed in hair and blood, even after cloning and re-sequencing.
Recently, some authors reported unstable inheritance of HV3 het-
eroplasmy variants over a few generations. Szibor et al. (13)
showed unstable inheritance at the CA repeat locus when analyzing
two pedigrees. Brandst�tter et al. (27) reported one case of CA
divergence in 135 families (mother–child pairs). In general, this
could be because of a marked reduction in the number of mtDNA
molecules being transmitted from mother to offspring (the mito-
chondrial genetic bottleneck), to the partitioning of mtDNA into
homoplasmic segregating units, or to the selection of a group of
mtDNA molecules to populate the next generation. Cree et al. (28)
recently suggested that the partitioning of mtDNA molecules into
different cells before and after embryo implantation, followed by
the segregation of replicating mtDNA between proliferating primor-
dial germ cells, is responsible for the varying levels of hetero-
plasmy seen among the offspring of heteroplasmic females, at least
in mice.

Conclusion

Regarding forensic practice, we have seen that point heteroplasmy
in HV3 is not as frequent as in the HV1 and HV2 regions. The contri-
bution of HV3 analysis, however, could play a role in a forensic case.
This region can increase discrimination and help in phylogenetic
analysis for quality assurance of sequences. Also, the great genetic
diversity in the CA repeat seems to increase its potential contribution
to the forensic analysis. Nevertheless, because there have been few
studies concerning variations of CA among different tissues within
the same individual, its analysis should be used with caution.
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